
Transformer Implementation with the High-Level Keras API

James Hirschorn

June 22, 2021

Contents
1 Transformer Implementation 1

1.1 Requirements . 2

2 Data 2
2.1 Tokenizers . 2
2.2 Data Pipeline . 4

3 Transformer Architecture 6
3.1 Embeddings . 6
3.2 Masking . 7
3.3 Positional Encodings . 8
3.4 Transformer Sublayers . 9
3.5 Attention . 10

3.5.1 Scaled Dot-Product Attention . 10
3.5.2 Attention Layer . 11

3.6 Feed-Forward Networks . 13
3.7 Encoder . 13

3.7.1 Encoder Layer . 13
3.8 Decoder . 14

3.8.1 Decoder Layer . 14
3.9 Transformer Model . 15

4 Model Usage 16
4.1 Training . 16

4.1.1 Loss . 16
4.1.2 Optimization . 16
4.1.3 Learning . 17

4.2 Inference . 17

References 18

1 Transformer Implementation
There are a numerous blogs/tutorials demonstrating transformer implementations in TensorFlow from scratch,
including the official TensorFlow transformer tutorial. However, we could not find a single example using the
high-level Keras API for building and training the transformer. For example, the official tutorial does not use
Keras’ built-in APIs for training and validation. This created difficulties for us when we attempted to build a
customized transformer based on existing examples.

The purpose of this article is to present a TensorFlow implementation of the transformer sequence-to-sequence
architecture Vaswani et al. (2017) in Keras following the high-level API specifications. We use TensorFlow’s

1

https://www.tensorflow.org/tutorials/text/transformer

built in implementation of the Keras API (see e.g. Guidance on High-level APIs in TensorFlow 2.0). Using a
high-level API makes the learning process more straightforward and the code much briefer. It also avoids
reinventing the wheel which can potentially introduce errors.

While the primary emphasis is on implementation, we also give our own in depth explanation of the transformer
model.

The root directory for the python code is the inst/python subdirectory of the GitHub repository for this
project.

1.1 Requirements
This library requires TensorFlow version 2.5.0. It may work on newer versions as well, and we have tested it
on the version 2.6 development branch. The full requirements are listed in inst/python/requirements.txt,
which was used to prepare an environment to run the python code presented here.

2 Data
All of the data is obtained from the tensorflow_datasets library. We begin with the ted_hrlr_translate
resource and the Portuguese to English language pair.
import tensorflow_datasets as tfds

resource = 'ted_hrlr_translate'
pair = 'pt_to_en'
examples, metadata = tfds.load(f'{resource}/{pair}', with_info=True,

as_supervised=True)

keys = metadata.supervised_keys
train_examples, eval_examples = examples['train'], examples['validation']

print(f'Keys: {metadata.supervised_keys}')

Keys: ('pt', 'en')

The individual examples have the following format:
example1 = next(iter(train_examples))
print(example1)

(<tf.Tensor: shape=(), dtype=string, numpy=b'e quando melhoramos a procura ,
tiramos a \xc3\xbanica vantagem da impress\xc3\xa3o , que \xc3\xa9 a
serendipidade .'>, <tf.Tensor: shape=(), dtype=string, numpy=b'and when you
improve searchability , you actually take away the one advantage of print ,
which is serendipity .'>)

2.1 Tokenizers
As usual for language modeling, sentences in some language must be converted to sequences of integers
in order to serve as input for a neural network, in a process called tokenization. The input sentences are
tokenized using the class SubwordTokenizer in the script tokenizer/subword_tokenizer.py. It is closely
based on the CustomTokenizer class from the Subword tokenizer tutorial which is in turn based on the
BertTokenizer from tensorflow_text.

From the tutorial: “The main advantage of a subword tokenizer is that it interpolates between word-based
and character-based tokenization. Common words get a slot in the vocabulary, but the tokenizer can fall
back to word pieces and individual characters for unknown words.” SubwordTokenizer takes a sentence and

2

https://blog.tensorflow.org/2018/12/standardizing-on-keras-guidance.html
https://github.com/quantitative-technologies/transformer-high-level-keras-api/
https://github.com/quantitative-technologies/transformer-high-level-keras-api/
https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/requirements.txt
https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets/catalog/ted_hrlr_translate
https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/tokenizer/subword_tokenizer.py
https://www.tensorflow.org/text/guide/subwords_tokenizer

first splits it into words using BERT’s token splitting algorithm and then applies a subword tokenizer using
the WordPiece algorithm.

The script prepare_tokenizers.py provides the prepare_tokenizers function which builds a pair of
SubwordTokenizers from the input examples and saves them to disk for later reuse, as they take some time
to build. The parameters below indicate that all text is converted to lowercase and that the maximum
vocabulary size of both the inputs and targets is 213 = 8192.
from prepare_tokenizers import prepare_tokenizers

TRAIN_DIR = 'train'

tokenizers, _ = prepare_tokenizers(train_examples,
lower_case=True,
input_vocab_size=2 ** 13,
target_vocab_size=2 ** 13,
name=metadata.name + '-' + keys[0] + '_to_' + keys[1],
tokenizer_dir=TRAIN_DIR,
reuse=True)

input_vocab_size = tokenizers.inputs.get_vocab_size()
target_vocab_size = tokenizers.targets.get_vocab_size()
print("Number of input tokens: {}".format(input_vocab_size))

Number of input tokens: 8318
print("Number of target tokens: {}".format(target_vocab_size))

Number of target tokens: 7010

The tokenizer is demonstrated on the the English sentence from example 1 above.
example1_en_string = example1[1].numpy().decode('utf-8')
tokenizer = tokenizers.targets
print(f'Sentence: {example1_en_string}')

Sentence: and when you improve searchability , you actually take away the one
advantage of print , which is serendipity .
tokens = tokenizer.tokenize([example1_en_string])
print(f'Tokenized sentence: {tokens}')

Tokenized sentence: <tf.RaggedTensor [[2, 72, 117, 79, 1259, 1491, 2362, 13,
79, 150, 184, 311, 71, 103, 2308, 74, 2679, 13, 148, 80, 55, 4840, 1434, 2423,
540, 15, 3]]>
text_tokens = tokenizer.lookup(tokens)
print(f'Text tokens: {text_tokens}')

Text tokens: <tf.RaggedTensor [[b'[START]', b'and', b'when', b'you',
b'improve', b'search', b'##ability', b',', b'you', b'actually', b'take',
b'away', b'the', b'one', b'advantage', b'of', b'print', b',', b'which', b'is',
b's', b'##ere', b'##nd', b'##ip', b'##ity', b'.', b'[END]']]>
round_trip = tokenizer.detokenize(tokens)
print(f"Convert tokens back to original sentence: " \

f"{round_trip.numpy()[0][0].decode('utf-8')}")

Convert tokens back to original sentence: and when you improve searchability ,

3

https://www.tensorflow.org/text/guide/subwords_tokenizer#applying_wordpiece
https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/prepare_tokenizers.py

you actually take away the one advantage of print , which is serendipity .

The tokenize method converts a sentence (or any block of text) into a sequence of tokens (i.e. integers).
The SubwordTokenizer methods are intended for lists of sentences, corresponding to the batched inputs
fed to the neural network, while in this example we use a batch of size one. The lookup method shows
which subword each input token represents. Note that the tokenizer has added special start and end tokens
accordingly to the tokenized sequence, which allows the model to understand about the start and end of each
input. detokenize maps the tokens back to the original sentence.

2.2 Data Pipeline
The tf.data.Dataset API is used for the input pipeline, suitable for consumption by TensorFlow/Keras
models. Since our data comes from tensorflow_datasets it is already a tf.data object to which we can
apply the necessary transformations and then iterate as batches.

Our input pipeline tokenizes the sentences from both languages into sequences of integers, discards any
examples where either the source or target has more than MAX_LEN tokens and collects them into batches of
size BATCH_SIZE. The reason for limiting the length of the input sequences is that both the transformer run
time and memory usage are quadratic in the input length, which is evident from the attention mechanism
shown in equation (3) below.

The result is a tf.data dataset which return a tuple of (inputs, targets) for each batch. As is
typical for Encoder–Decoder auto-regressive sequence-to-sequence architectures, the input is of the
form (encoder_inpout, decoder_input) where encoder_input is the tokenized source sentence and
decoder_input is tokenized target sentence with the last token dropped; while targets is the tokenized
target sentence lagged by one for autoregression.

The input pipeline encapsulated in our Dataset class follows the TensorFlow Data Pipeline Performance
Guide:

transformer/dataset.py
import tensorflow as tf

BUFFER_SIZE = 20000

class Dataset:
"""
Provides a data pipeline suitable for use with transformers
"""
def __init__(self, tokenizers, batch_size, input_seqlen, target_seqlen):

self.tokenizers = tokenizers
self.batch_size = batch_size
self.input_seqlen = input_seqlen
self.target_seqlen = target_seqlen

def data_pipeline(self, examples, num_parallel_calls=None):
return (

examples
.cache()
.map(tokenize_pairs(self.tokenizers),

num_parallel_calls=num_parallel_calls)
.filter(filter_max_length(max_x_length=self.input_seqlen,

max_y_length=self.target_seqlen))
.shuffle(BUFFER_SIZE)
.padded_batch(self.batch_size)

4

https://www.tensorflow.org/api_docs/python/tf/data/Dataset
https://www.tensorflow.org/guide/data_performance
https://www.tensorflow.org/guide/data_performance
https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/dataset.py

.prefetch(tf.data.AUTOTUNE)
)

def filter_max_length(max_x_length, max_y_length):
def filter(x, y):

return tf.logical_and(tf.size(x['encoder_input']) <= max_x_length,
tf.size(y) < max_y_length)

return filter

def tokenize_pairs(tokenizers):
def tokenize(x, y):

inputs = tokenizers.inputs.tokenize([x])[0]
targets = tokenizers.targets.tokenize([y])[0]

decoder_inputs = targets[:-1]
decoder_targets = targets[1:]
return dict(encoder_input=inputs, decoder_input=decoder_inputs), decoder_targets

return tokenize

We extract the first batch from the data pipeline:
import tensorflow as tf
from transformer.dataset import Dataset

BATCH_SIZE = 64
MAX_LEN = 40

dataset = Dataset(tokenizers, batch_size=BATCH_SIZE,
input_seqlen=MAX_LEN, target_seqlen=MAX_LEN)

data_train = dataset.data_pipeline(train_examples,
num_parallel_calls=tf.data.experimental.AUTOTUNE)

data_eval = dataset.data_pipeline(eval_examples,
num_parallel_calls=tf.data.experimental.AUTOTUNE)

batch1 = next(iter(data_train))
print(batch1)

({'encoder_input': <tf.Tensor: shape=(64, 40), dtype=int64, numpy=
array([[2, 695, 92, ..., 0, 0, 0],
[2, 133, 40, ..., 0, 0, 0],
[2, 182, 528, ..., 0, 0, 0],
...,
[2, 40, 90, ..., 0, 0, 0],
[2, 89, 505, ..., 0, 0, 0],
[2, 120, 343, ..., 3, 0, 0]])>, 'decoder_input': <tf.Tensor: shape=(64, 39), dtype=int64, numpy=
array([[2, 534, 71, ..., 0, 0, 0],
[2, 110, 99, ..., 0, 0, 0],
[2, 116, 718, ..., 0, 0, 0],
...,
[2, 71, 55, ..., 0, 0, 0],
[2, 107, 79, ..., 0, 0, 0],
[2, 77, 71, ..., 0, 0, 0]])>}, <tf.Tensor: shape=(64, 39), dtype=int64, numpy=

5

array([[534, 71, 481, ..., 0, 0, 0],
[110, 99, 278, ..., 0, 0, 0],
[116, 718, 722, ..., 0, 0, 0],
...,
[71, 55, 1325, ..., 0, 0, 0],
[107, 79, 158, ..., 0, 0, 0],
[77, 71, 308, ..., 0, 0, 0]])>)

3 Transformer Architecture

Figure 1: Transformer

The transformer has an encoder-decoder structure as is typical for neural sequence transduction models,
e.g. language translation. The encoder encodes a sequence of tokens (x1, . . . , xn) from the first language to a
continuous representation z = (z1, . . . , zn) in dmodel-dimensional Euclidean space, i.e. each zi ∈ Rdmodel . The
decoder the maps this representation to a sequence of tokens (y1, . . . , ym) auto-autorepressively: each symbol
yj is predicted from z and the previously predicted symbols y1 . . . , yj−1.

In all of the code snippets below, the imports are not shown but are included in the following:
import tensorflow as tf
from tensorflow.keras import Sequential, Model
from tensorflow.keras.layers import Layer, Embedding, Dropout, LayerNormalization, Input

Filenames in this section are relative to the transformer subdirectory of the source code.

3.1 Embeddings
The initial layer of the both the encoder and decoder map input and output symbols to dmodel-dimensional
space, respectively. This is the usual learned embedding, where for each symbol dmodel weights are learned

6

which map this symbol to dmodel-space. These embeddings tend to have desirable properties which make
them interesting in their own right. For example, when the symbols are tokens obtained from some language
those with similar meanings have closer embeddings in dmodel-space.

3.2 Masking
The Keras API has built in support for masking, which is used to ignore specified positions in sequential
inputs. It is described for example in the TensorFlow Keras Guide on Masking and Padding. Layers that
utilize masking are either mask consumers or producers, where the latter can also modify an existing mask.
In the transformer architecture the attention layers are the mask consumers.

There are two uses for masking in the architecture. The first is the usual one for sequence models. The input
sequences are padded at the end with zeros so that each batch has members of the same length. These are
masked out so that, for example, the position pair (i, j) has zero attention weight whenever either the ith or
the jth position of the input is padding. We define the PaddingMask layer to produce these masks.
_keras_mask_attr = '_keras_mask'

class PaddingMask(Layer):
def __init__(self, mask_value=0):

super().__init__()
self.mask_value = mask_value

def call(self, inputs):
Needed to ensure that mask gets recomputed
if hasattr(inputs, _keras_mask_attr):

delattr(inputs, _keras_mask_attr)
return inputs

def compute_mask(self, inputs, mask=None):
return tf.math.not_equal(inputs, self.mask_value)

To implement a mask producing layer, the class member function compute_mask is implemented. It takes the
inputs and an optional mask argument and uses them to produce a new mask. Keras stores a tensor’s mask
in the _keras_mask attribute. Notice that we remove this attribute in the call method. We found this to
be necessary, because as we discovered TensorFlow has an efficiency “hack”, where it does not produce a
mask when a mask consuming layer’s input already has a mask. However, the PaddingMask simply passes its
input forward which might have some preexisting mask which needs to be replaced.

The other use of masking is in auto-regression. During training the decoder layer uses what is called teacher
forcing where the loss is determined by the model’s output at position i, where it receives the decoder input
sequence up to but not including position i. This achieved by masking in the decoder self-attention layer
(see below), where positions pairs (i, j) with i < j are masked out. This means that the ith query can only
do lookups with the first i keys (see Attention and Decoder Layer below). Without this masking there is
a mismatch between the training, and what happens during inference which is necessarily auto-regressive.
Indeed, we confirmed that the model outputs nonsense when trained without the auto-regressive mask.
def create_look_ahead_mask(size):

"""
Lower-triangular Boolean matrix
"""

mask = tf.cast(tf.linalg.band_part(tf.ones((size, size)), -1, 0), tf.bool)
return mask # (size, size)

7

https://www.tensorflow.org/tutorials/text/transformer

class AutoRegressiveMask(Layer):
def __init__(self):

super().__init__()

def call(self, inputs, mask=None):
Needed to ensure that mask gets recomputed
if hasattr(inputs, _keras_mask_attr):

delattr(inputs, _keras_mask_attr)
return inputs

def compute_mask(self, inputs, mask=None):
if mask is None:

return None

seq_length = tf.shape(inputs)[1]

look_ahead_mask = create_look_ahead_mask(seq_length)
mask = tf.logical_and(look_ahead_mask, tf.expand_dims(mask, axis=1))
return mask

3.3 Positional Encodings
An effective sequence-to-sequence models takes into account the ordering of its input sequences. For example,
in the case of language translation, it should be more than just a bag of words model. Positional encodings
are used to inform the model of the position of each symbol in a given input sequence. Thus the integers,
representing 0-based indices, are mapped into Rdmodel . The particular encoding used here is given by
the Fourier basis functions with wavelengths varying with the dimensions: An integer p is mapped to
E(p) = (E(p)0, . . . , E(p)dmodel−1) where

E2i(p) = sin(p · b−
2i

dmodel),

E2i+1(p) = cos(p · b−
2i

dmodel),
(1)

where b is the base of the encoding. The wavelengths θi = 2π · b
2i

dmodel form a geometric progression from 2π
to 2bπ (noninclusive). The 2ith dimension contains the sin Fourier basis functions at wavelength θi, evaluated
at x = 1, and the 2i+ 1th dimension contains the cos basis functions at this wavelength. The use of varying
wavelengths ensures that distant integers are dissimilar in dmodel-space even though they might be very close
in some dimensions. From basic properties of the Fourier basis, it follows that for each k there exists a vector
λk ∈ Rdmodel such that

E(p+ k) = λk · E(p) for all p. (2)

In Vaswani et al. (2017) it is hypothesized that this latter property allows the model to attend by relative
position as well as actual position.

The code for the ScaledEmbedding layer is displayed here, slightly simplified from the class in embedding.py.
The positional_encoding function is from positional_encoding.py and was taken verbatim from the
TensorFlow transformer tutorial.
class ScaledEmbedding(Layer):

def __init__(self, input_dim, output_dim, dropout_rate, max_seqlen,
positional=True):

super().__init__()
self.embedding = Embedding(input_dim, output_dim, mask_zero=True)
self.positional = positional
if positional:

8

https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/embedding.py
https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/positional_encoding.py
https://www.tensorflow.org/tutorials/text/transformer

self._positions_enc = positional_encoding(max_seqlen, output_dim)
self.dropout = Dropout(dropout_rate)
self._c = tf.math.sqrt(tf.cast(output_dim, dtype=tf.float32))
self.supports_masking = True

def call(self, inputs, training=None):
x_enc = self.embedding(inputs) * self._c
if self.positional:

seq_len = tf.shape(inputs)[1]
x_enc += self._positions_enc[:, :seq_len, :]

return self.dropout(x_enc, training)

Custom layers that are not mask-producing, i.e. which do not modify the current input mask or create a
new one, will destroy the current mask by default. Setting the supports_masking attribute to True allows
the current mask to instead propagate through to the next layer unchanged. This is needed since we use
PaddingMask before ScaledEmbedding, and this padding mask needs to be propagated to the encoder/decoder
layers.

The dropout layer only has an effect during training, and for this reason our call method takes the optional
Boolean training parameter to inform the Dropout layer. When using the Keras API for training or
inference, it automatically passes the correct training value to all of its layers (including ScaledEmbedding).
In fact, we do not even have to use the training parameter because the API will automatically pass the
correct value to the dropout layer. However, we include it so that our custom ScaledEmbededing can also be
used properly independently of the Keras API.

3.4 Transformer Sublayers
The transformer architecture contains only attention sublayers and simple feed-forward sublayers: “Attention
is all you need”. Every sublayer in the transformer has a residual connection followed by Layer Normalization,
which standardizes the output so that each sample has mean 0 and variance 1, as opposed to Batch
Normalization which standardizes across the whole batch.

Residual connections avoid the problem of vanishing gradients, but more importantly avoid the Degradation
problem where adding additional layers degrade accuracy even on the training set (so not due to overtraining).
They are introduced in He et al. (2016).

In general, mean/variance normalization speeds up stochastic gradient descent by creating a more symmetric
error surface and also alleviates vanishing/exploding gradients in multilayer networks. Batch Normalization
(BN) is a milestone technique, where the normalization is taken for each neuron over the input batch. BN is
problematic for sequential models such as transformers, where the batch samples have differing sequence
lengths. In Ba, Kiros, and Hinton (2016), the alternative Layer Normalization is introduced where the
normalization is over each layer instead of neuron, but is taken one sample at a time avoiding the issue with
differing sequence lengths. See also Group Normalization, Wu and He (2020) for more on generalizing Batch
Normalization.

Given an input x, and possibly additional inputs ..., the output is then
LayerNorm(x + SubLayer(x, ...)) where SubLayer(x, ...) is the output of either an attention or feed-
forward sublayer. In order to facilitate the residual connections, the output of each layer, including the
embedding layers, must have the same dimension dmodel. The original paper used dmodel = 512 dimensions,
while we used dmodel = 128.

The transformer sublayer is implemented in sublayer.py.
class TransformerSubLayer(Layer):

def __init__(self, input_sublayer, input_key=None, epsilon=1e-6,
dropout_rate=0.1):

super().__init__()

9

https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/sublayer.py

self.input_sublayer = input_sublayer
self.input_key = input_key
self.epsilon = epsilon
self.dropout_rate = dropout_rate
self.dropout = Dropout(dropout_rate)
self.layernorm = LayerNormalization(epsilon=epsilon)

def call(self, inputs, training=False, mask=None):
if self.input_key is not None:

x = inputs[self.input_key]
else:

x = inputs
sublayer_outputs = self.input_sublayer(inputs=inputs, mask=mask)
outputs = self.dropout(sublayer_outputs, training)
outputs += x # Loses the mask info
return self.layernorm(outputs)

def compute_mask(self, inputs, mask=None):
if mask is None:

return None

if self.input_key:
return mask[self.input_key]

return mask

The input_sublayer parameter is a TensorFlow Layer (in its use for the transformer this is either an attention
sublayer or a feed-forward sublayer). The inputs to the call function are passed to this input_layer, and
can be either a TensorFlow tensor or a dict mapping names to tensors in the case of multiple inputs. In the
latter case, input_key indicates which member of the dict is the primary input to be used in the residual
connection; and also the input masks are modified so that only the mask relevant to the output is returned.

3.5 Attention
3.5.1 Scaled Dot-Product Attention

Given nk keys of dimension dk and nv = nk values of dimension dv, packed into an nk × dk matrix K and
an nk × dv matrix V , respectively, along with nq queries of dimension dq = dk packed as Q, the attention
function outputs the following nq × dv matrix:

Attention(Q,K, V) = softmax
(
QK>√
dk

)
V, (3)

where the softmax is row-wise, so that the rows are probability distributions, forming an nq × nk matrix of
attention weights. Thus the ith row of the attention weight matrix gives a probability distribution (i.e. weights)
over the values used to resolve the ith query, where each weight is determined by the compatibility of the
query with the corresponding key.

In the case of sequence-to-sequence models, the ith query corresponds to the ith position of the input sequence
and the jth key/value pair corresponds to the jth position of the target sequence, so that the attention
mechanism determines how much weight is given to this pair in the output.

In attention.py, we use nearly same code as in TensorFlow transformer tutorial to implement the scaled
dot-product attention in (3), generalized to tensors and including masking, except that the mask parameter
is a Boolean tensor (one Boolean value per timestep in the input) used to skip certain input timesteps when
processing timeseries data.

10

https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/attention.py
https://www.tensorflow.org/tutorials/text/transformer

def scaled_dot_product_attention(q, k, v, mask):
"""Calculate the attention weights.
q, k, v must have matching leading dimensions.
k, v must have matching penultimate dimension, i.e.: n_k = n_v.
q, k must have matching last dimension, i.e.: d_q = d_k.
The mask has different shapes depending on its type(padding or look ahead)
but it must be broadcastable for addition.

Args:
q: query shape == (..., n_q, d_q)
k: key shape == (..., n_k, d_k)
v: value shape == (..., n_v, d_v)
mask: Boolean tensor with shape broadcastable

to (..., n_q, n_k). Defaults to None.

Returns:
output, attention_weights

"""

matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., n_q, n_k)

scale matmul_qk
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)

add -infinity to the masked out positions in the scaled tensor.
if mask is not None:

masked_out = tf.cast(tf.math.logical_not(mask), tf.float32)
scaled_attention_logits += masked_out * -1e9

softmax is normalized on the last axis (n_k) so that the scores
add up to 1.
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., n_q, n_k)

output = tf.matmul(attention_weights, v) # (..., n_q, d_v)

return output, attention_weights

3.5.2 Attention Layer

For simplicity we present a single-head attention layer here. The actual transformer uses a multi-head
attention layer in attention.py. It is implemented as a custom layer, using the Keras Layer subclassing
API.

In the Keras Layer subclassing API, a custom layer is implemented as a class that inherits from Layer, and
implements a call method with mandatory argument inputs, and “privileged” optional arguments training
and mask. The API also specifies a build method for initialization steps which can only be performed after
the input shape is known, but this does not apply to any of our layers.

The SingleHeadAttention layer is a mask consuming layer. Thus its call method exposes the mask
parameter which gets passed on to scaled_dot_product_attention, to indicate which position pairs (i, j)
in the inputs and targets to ignore.

single_head_attention_layer.py

11

https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/attention.py
https://www.tensorflow.org/tutorials/customization/custom_layers
https://www.tensorflow.org/guide/keras/custom_layers_and_models
https://www.tensorflow.org/guide/keras/custom_layers_and_models
https://www.tensorflow.org/guide/keras/masking_and_padding#writing_layers_that_need_mask_information
https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/single_head_attention_layer.py

class SingleHeadAttention(Layer):
def __init__(self, d_model):

super().__init__()
self.d_model = d_model
self.dense = Dense(d_model)

def call(self, inputs, mask=None):
q, k, v = inputs['q'], inputs['k'], inputs['v']

scaled_attention, attention_weights = scaled_dot_product_attention(
q, k, v, mask)

output = self.dense(scaled_attention) # (batch_size, seq_len_q, d_model)

return output, attention_weights

This layer performs the calculation:

SingleHeadAttention(Q,K, V) = Attention(Q,K, V)WO, (4)

where WO ∈ Rdv×dmodel is the learned linear projection of the scaled dot-product to dmodel-space. Note that
even though we shall always have dv = dmodel the projection is still important to orient the output, since it is
used in calculations such as x+ SingleHeadAttention(x, x, x) where the orientation of the output becomes
relevant. Indeed we verified that while the transformer still learns without the final projection, the results are
substantially worse. (We did not make actual benchmarks, but simply inspected the model outputs after
training for the same number of epochs in each case.)

3.5.2.1 Multi-Head Attention The multi-head attention splits the attention mechanism into n separate
“heads”, each with their own representation of the queries, keys and values. They run in parallel, allowing the
model to attend simultaneously to different position pairs in different representation spaces:

MultiHeadAttention(Q,K, V) = Concat(head1, . . . ,headn)WO (5)

where Concat is row-wise concatenation and

headi = Attention(QWQ
i ,KW

K
i , V WV

i), (6)

and WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel are projections.

In transformer architecture, the representation spaces are all of dimensions dq = dk = dv = dmodel / h. We
use h = 8 heads as in the original paper, and saw an visible improvement of the single-head architecture. As
noted in the paper, a single-head attention cannot simultaneously attend differently in different representation
subspaces. If one tries to add projections WQ, WK and WV in equation (4), they will simply be factored
out into WO and have no effect.

The code for the MultiHeadAttention class is in attention.py and is nearly the same as the corresponding
class in the official transformer tutorial, except that the call method signature has been modified to conform
with the Keras API.

3.5.2.2 Contextual Embeddings In contrast to the embedding layers, which embed a symbol to the
same vector regardless of its position in the sequence (besides the added positional encoding which encodes
only its ordinal position), the attention layers are contextual embeddings meaning that the representation of
each symbol is based on the entire input sequence—except when an auto-regressive mask is used so that it
only depends on the preceding symbols in the sequence, as in the self-attention of the decoder layer described
below.

12

https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/attention.py
https://www.tensorflow.org/tutorials/text/transformer

3.6 Feed-Forward Networks
Each transformer sublayer has a fully connected feed-forward network consisting of two layers with a single
ReLU activation in between. The first layer has dimension dff which is 2048 in the paper, while we use the
smaller value of 512 in our example code. The second output layer has dimension dmodel, the same as the
input. Note that each position of the sequential input gets passed through the identical feed-forward network.
This is the only place in the transformer architecture where there is nonlinearity. It is where the queries, keys
and values are learned for the self-attention layers of the encoder and decoder, as described next.

These can be easily implemented using the Sequential API. A slightly simplified version of the code in
feed_forward is as follows.
def pointwise_feed_forward_network(d_model, dff):

return Sequential([
Dense(dff, activation='relu'), # (batch_size, seq_len, dff)
Dense(d_model) # (batch_size, seq_len, d_model)

])

3.7 Encoder
The encoder is a stack of N identical encoder layers, where N = 6 in the paper while we use 4 layers in our
example. The output of the encoder, which is the output of the last encoder layer, is a sequence of elements
in dmodel-dimensions space of the same length as the sequence input to the encoder. This output x is learned
in the encoder layers to serve as a key-value lookup of the form (x, x) (from dmodel-space into dmodel-space).
This lookup is the information that is passed from the encoder to the decoder, where the decoder queries the
lookup from its own input.

3.7.1 Encoder Layer

Each encoder layer consists of a self-attention sublayer followed by a feed-forward sublayer. This is naturally
implemented with the Sequential API. The following is (a slightly simplified version of) the function from
encoder.py which creates the encoder layer.
def encoder_layer(d_model, num_heads, dff, dropout_rate):

mha = MultiHeadSelfAttention(d_model, num_heads, mask_rank=2)
ffn = pointwise_feed_forward_network(d_model, dff)

return tf.keras.Sequential([
TransformerSubLayer(mha, epsilon=1e-6, dropout_rate=dropout_rate),
TransformerSubLayer(ffn, epsilon=1e-6, dropout_rate=dropout_rate)

])

The encoder itself can be simply implemented using the Sequential API. The encoder function from
encoder.py implements the entire encoder stack including the input embeddings.
def encoder(num_layers, d_model, num_heads, dff, input_vocab_size,

maximum_position_encoding, dropout_rate):
layer_list = [

PaddingMask(mask_value=0),
ScaledEmbedding(input_vocab_size, d_model, dropout_rate,

maximum_position_encoding, positional=True)] + \
[encoder_layer(d_model, num_heads, dff, dropout_rate)
for i in range(num_layers)]

return Sequential(layer_list)

13

https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/encoder.py
https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/encoder.py

3.8 Decoder
The decoder is a stack of N identical decoder layers. The output of the decoder is fed to the model “head”
and determines the probability distribution over the target symbols for each element in the decoder input
sequence.

3.8.1 Decoder Layer

Each decoder layer begins with a self-attention layer using the auto-regressive mask to prevent position i
attending on (i.e. looking up) a position j > i. Note that since the target is shifted by one, position i should
still looks up itself. This is followed by the encoder-decoder attention sublayer which uses the output of the
self-attention decoder sublayer as a query to the key-value lookup output by the encoder. The third sublayer
is the feed-forward sublayer.

We cannot use the Sequential API for the decoder layer since it takes two inputs: the encoder output and
the decoder input. It can naturally be implemented using the Functional API. This is (a slightly simplified
version of) the decoder layer creation function from decoder.py.
def decoder_layer(d_model, num_heads, dff, dropout_rate):

encoder_output = Input(shape=(None, d_model), name='encoder_output')
decoder_input = Input(shape=(None, d_model), name='decoder_input')

auto_regress = AutoRegressiveMask()
mha_self = MultiHeadSelfAttention(d_model, num_heads, mask_rank=4)
mha_auto_reg = Sequential([auto_regress, mha_self])
mha_self_sublayer = TransformerSubLayer(mha_auto_reg, epsilon=1e-6,

dropout_rate=dropout_rate)

mha_2inp = MultiHeadTwoInputAttention(d_model, num_heads)
mha_2inp_sublayer = TransformerSubLayer(mha_2inp, input_key='queries',

epsilon=1e-6, dropout_rate=dropout_rate)

ffn = pointwise_feed_forward_network(d_model, dff)
ffn_sublayer = TransformerSubLayer(ffn, epsilon=1e-6, dropout_rate=dropout_rate)

out1 = mha_self_sublayer(decoder_input)
out2 = mha_2inp_sublayer(dict(queries=out1, lookups=encoder_output))
outputs = ffn_sublayer(out2)

return Model(inputs=[encoder_output, decoder_input], outputs=outputs)

The decoder itself including the inputs can then also be implemented with the Functional API. From
decoder.py:
def decoder(num_layers, d_model, num_heads, dff, target_vocab_size,

maximum_position_encoding, dropout_rate=0.1):

encoder_output = Input(shape=(None, d_model), name='encoder_output')
decoder_input = Input(shape=(None,), name='decoder_input')

embedding = Sequential([PaddingMask(),
ScaledEmbedding(target_vocab_size,

d_model, dropout_rate,
maximum_position_encoding,
positional=True)])

decoder_layers = [

14

https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/decoder.py
https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/decoder.py

decoder_layer(d_model, num_heads, dff, dropout_rate=dropout_rate)
for _ in range(num_layers)]

x = embedding(decoder_input)
for i in range(num_layers):

x = decoder_layers[i](dict(decoder_input=x, encoder_output=encoder_output))

return Model(inputs=[encoder_output, decoder_input], outputs=x)

Note that unlike the decoder layers the shape for the decoder_input is (None,) for the decoder itself, since
the inputs are tokenized sequences which have not yet been embedded in dmodel-space.

3.9 Transformer Model
The final transformer model has two inputs, the tokenized encoder and decoder sequences. First the encoder
input is fed to the stack of encoder layers, and the resulting output is combined with the decoder input to
feed to the stack of decoder layers. The decoder output is then passed to a final fully connected layer whose
dimension is the size of the target vocabulary (i.e. number of symbols), so that the model output can predict
target symbols. More precisely, as an auto-regressive model it is predicting the next-symbol probabilities.

In Vaswani et al. (2017, 3.4) it is stated that the encoder and decoder embedding layers and the final fully
connected layer all share the same weight matrix, and thus all have the same symbol embedding. This
method is introduced in Press and Wolf (2016), where is it claimed for example that an English/French
translation task shares up to 90% of the same subwords (using the byte pair encoding compression algorithm
for tokenization, rather than WordPiece used here). For this method the union of the subwords is taken
so that the the source/target vocabularies are the same. In our implementation, the source and target
vocabularies are not merged and these three weight matrices are all learned separately.

The transformer can be implemented naturally using the Functional API. The code in transformer.py is
slightly simplified as follows.
def transformer(num_layers, d_model, num_heads, dff,

input_vocab_size, target_vocab_size,
pe_input_max, pe_target_max, dropout_rate):

encoder_input = Input(shape=(None,), name='encoder_input')
decoder_input = Input(shape=(None,), name='decoder_input')

encoder_stack = encoder(num_layers, d_model, num_heads, dff,
input_vocab_size, pe_input_max, dropout_rate)

decoder_stack = decoder(num_layers, d_model, num_heads, dff,
target_vocab_size, pe_target_max, dropout_rate)

final_layer = Dense(target_vocab_size)

encoder_output = encoder_stack(encoder_input)
decoder_output = decoder_stack(

dict(decoder_input=decoder_input, encoder_output=encoder_output))
final_output = final_layer(decoder_output)

return Model(inputs=[encoder_input, decoder_input], outputs=final_output)

It is crucial to note that the mask on the decoder_output is propagated through the transformer model.
The is used by the loss function, which ensures that the padding at the end of the sequences is not included
in the loss calculation (but see the caveat in the Loss section). Similarly the mask is used by the metrics, in
our case the accuracy metric, ignoring the padding for the metric calculation.

15

https://github.com/quantitative-technologies/transformer-high-level-keras-api/blob/master/inst/python/transformer/transformer.py

4 Model Usage
Since the transformer model constructed here conforms to the Keras API guidelines, we can naturally use the
built-in APIs for training and inference.

4.1 Training
4.1.1 Loss

One of the trickiest aspects of the implementation was getting the loss right. This is one place where the
disadvantages of using the higher-level Keras API show up: Less control and less clarity about what is
going on behind the scenes. It took some time to notice that losses compiled into the Keras model use the
propagated mask to modify the loss calculation as wanted, but do not make the expected/desired reduction
afterwards. We expected that simply compiling the built-in SparseCategoricalCrossentropy loss into the
model would give the correct loss. The compiled losses use the mask on the model output to correctly mask
out the losses for irrelevant sequence members, i.e. it zeros the losses corresponding to sequence padding;
however, the average is then computed over the entire sequence. For example, if a batch has dimension
(64, 37), then while the 64 * 37 loss matrix will have 0s where there is padding, the final loss is calculated
by summing the loss matrix and then calculating the mean by dividing by 64 * 37. However, to correctly
calculate the summarized loss we want to divide by the number of non-masked elements in the batch. While
the transformer still learns reasonably well with this built-in loss calculation, is does significantly better with
the correct loss.

We could not see anyway to opt out of this behaviour, short of removing the mask from the final output
which is a hack and causes the built-in metrics to give incorrect results. To overcome this we added the
following “correction factor” to a custom loss, which is also a hack. From transformer/loss.py:
from tensorflow.keras.losses import Loss, sparse_categorical_crossentropy

class MaskedSparseCategoricalCrossentropy(Loss):
def __init__(self, name='masked_sparse_categorical_cross_entropy'):

super().__init__(name=name)

def call(self, y_true, y_pred):
loss = sparse_categorical_crossentropy(y_true, y_pred,

from_logits=True)
mask = getattr(y_pred, '_keras_mask')
sw = tf.cast(mask, y_pred.dtype)
desired loss value
reduced_loss = tf.reduce_sum(loss * sw) / tf.reduce_sum(sw)
cannot opt out of mask corrections in the API
correction_factor = tf.reduce_sum(tf.ones(shape=tf.shape(y_true))) / \

tf.reduce_sum(sw)

return reduced_loss * correction_factor

4.1.2 Optimization

transformer/schedule.py
from tensorflow.keras.optimizers.schedules import LearningRateSchedule

class CustomSchedule(LearningRateSchedule):
def __init__(self, d_model, warmup_steps=4000):

16

super(CustomSchedule, self).__init__()
self.d_model = tf.cast(d_model, tf.float32)
self.warmup_steps = warmup_steps

def __call__(self, step):
arg1 = tf.math.rsqrt(step)
arg2 = step * (self.warmup_steps ** -1.5)

return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)

The Adam optimizer is used with the same settings as in the paper Vaswani et al. (2017).
from tensorflow.keras.optimizers import Adam

D_MODEL = 128

learning_rate = CustomSchedule(d_model=D_MODEL)
optimizer = Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9)

4.1.3 Learning

The actual code is in program.py. However, the following sequence illustrates how the Keras training API is
called.
from transformer.transformer import transformer

model = transformer(num_layers=4, d_model=D_MODEL,
num_heads=8, dff=512,
input_vocab_size=input_vocab_size,
target_vocab_size=target_vocab_size,
pe_input_max=MAX_LEN,
pe_target_max=MAX_LEN,
dropout_rate=0.1)

model.compile(optimizer=optimizer,
loss=MaskedSparseCategoricalCrossentropy(),
metrics=['accuracy'])

model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
TRAIN_DIR + '/checkpoint.{epoch}.ckpt',
save_weights_only=True)

model.fit(data_train, epochs=1, validation_data=data_eval,
callbacks=model_checkpoint_callback)

4.2 Inference
Inference with the transformer, or any auto-regressive model, is not simply a matter of plugging a testing
pipeline into the model and calling predict. The training process uses teacher forcing as previously discussed,
which means the next symbol is predicted based on the given ground truth up to that point in the sequence.
In contrast, during inference the sequence of predicted symbols is used to recursively predict the next symbol.
The code for doing this is in transformer/autoregression.py:
def autoregress(model, input, delimiters, max_length):

delimiters = delimiters[0]

17

decoder_input = [delimiters[0]]

output = tf.expand_dims(decoder_input, 0)

done = False
while not done:

preds = model({'encoder_input': tf.expand_dims(input, 0), 'decoder_input': output})
prediction = preds[:, -1, :]
pred_id = tf.argmax(prediction, axis=-1) \

if tf.shape(output)[1] < max_length - 1 else tf.expand_dims(delimiters[1], 0)

done = pred_id == delimiters[1]
output = tf.concat([output, tf.expand_dims(pred_id, 0)], axis=-1)

return tf.squeeze(output, axis=0)

def translate(model, input, tokenizers, max_length):
"""
Translate an input sentence to a target sentence using a model
"""
input_encoded = tokenizers.inputs.tokenize([input])[0]

if len(input_encoded) > max_length:
return None

prediction = autoregress(model,
input_encoded,
delimiters=tokenizers.targets.tokenize(['']),
max_length=max_length)

prediction_decoded = tokenizers.targets.detokenize([prediction]).numpy()[0][0].decode('utf-8')

return prediction_decoded

References
Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. “Layer Normalization.” https://arxiv.org/

pdf/1607.06450.pdf.
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. “Deep Residual Learning for Image

Recognition.” In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–78.
Las Vegas, NV, USA: IEEE. https://doi.org/10.1109/CVPR.2016.90.

Press, Ofir, and Lior Wolf. 2016. “Using the Output Embedding to Improve Language Models.” CoRR
abs/1608.05859. http://arxiv.org/abs/1608.05859.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. 2017. “Attention Is All You Need.” CoRR abs/1706.03762. http://arxiv.org/abs/17
06.03762.

Wu, Yuxin, and Kaiming He. 2020. “Group Normalization.” International Journal of Computer Vision 128
(3): 742–55. https://doi.org/10.1007/s11263-019-01198-w.

18

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/1607.06450.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1608.05859
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1007/s11263-019-01198-w

	Transformer Implementation
	Requirements

	Data
	Tokenizers
	Data Pipeline

	Transformer Architecture
	Embeddings
	Masking
	Positional Encodings
	Transformer Sublayers
	Attention
	Scaled Dot-Product Attention
	Attention Layer

	Feed-Forward Networks
	Encoder
	Encoder Layer

	Decoder
	Decoder Layer

	Transformer Model

	Model Usage
	Training
	Loss
	Optimization
	Learning

	Inference

	References

